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Abstract

The maximum entropy principle is a versatile tool for evaluating smooth approximations of probability density func-
tions with the least bias beyond specified constraints. In the recent paper we introduced new computational framework for
the moment-constrained maximum entropy problem in a multidimensional domain, and developed a simple numerical
algorithm capable of computing maximum entropy problem in a two-dimensional domain with moment constraints of
order up to 4. Here we design an improved numerical algorithm for computing the maximum entropy problem in a
two- and higher-dimensional domain with higher order moment constraints. The algorithm features multidimensional
orthogonal polynomial basis in the dual space of Lagrange multipliers to achieve numerical stability and rapid convergence
of Newton iterations. The new algorithm is found to be capable of solving the maximum entropy problem in the two-
dimensional domain with moment constraints of order up to 8, in the three-dimensional domain with moment constraints
of order up to 6, and in the four-dimensional domain with moment constraints of order up to 4, corresponding to the total
number of moment constraints of 44, 83 and 69, respectively. The two- and higher-dimensional maximum entropy test
problems in the current work are based upon long-term statistics of numerical simulation of the real-world geophysical
model for wind stress driven oceanic currents such as the Gulf Stream and the Kuroshio.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The moment-constrained maximum entropy problem yields an estimate of a probability density with high-
est uncertainty among all densities satisfying supplied moment constraints. Generally, other methods to obtain
smooth approximations are available, such as kernel density estimates for statistical ensembles [24,28,29].
Here, however, we assume instead that the moment data are available as, for example, in a variety of settings
in solid state physics [4,15,16,31], econometrics [23,32], and geophysical applications such as weather and
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climate prediction [2,3,14,17,19,25,27]. In addition, maximum entropy problem provides rigorous upper
bound on Shannon entropy under specified constraints, which sometimes is a highly desirable feature not,
for example, readily available for kernel density estimates. The approximation itself is obtained by maximizing
Shannon entropy under the constraints established by measured moments [22] within the mathematical frame-
work known as the moment problem. Generally one distinguishes between three types of moment problems:

� Hausdorff moment problem: The target probability density is supported on the closed interval [a,b], often
remapped into [0,1] for simplicity.
� Stieltjes moment problem: The target probability density is supported on the half-open interval [0,+1).
� Hamburger moment problem: The target probability density is supported on the real line.

For details, see, for example [8,30] and references therein. Here we restrict ourselves to the setting of the
Hamburger moment problem, although generalization to the Hausdorff and Stieltjes moment problems is
straightforward. A standard formalism [33] transforms the constrained maximum entropy problem into the
concave minimization problem of the Lagrangian function. Conventional methods to resolve unconstrained
optimization problems are very well studied, and include the gradient descent method, the Newton algorithm
[7], and the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [5].

The new maximum entropy algorithm is intended to be used mainly in geophysical applications, such as
medium range weather forecasting and climate prediction. The idea of applying the rigorous framework of
information theory for ensemble forecasting was proposed in [27], utilizing Shannon entropy as a measure
of the lack of predictive information in a forecast. It later evolved into a concept of measuring the lack of
information in an average long-term statistical state (climate) relative to a forecast via relative entropy
[17,25]. The latter was formalized in [19] by developing a hierarchy of rigorous lower bounds for relative
entropy. Successful development of a simple maximum entropy algorithm in [1], capable of carrying out com-
putations on the two-dimensional domain with moments of order up to four, turned the theoretical framework
in [19] into a practical predictability tool in [2] via applying relative entropy for information measurements in
higher moments of forecast ensembles (non-Gaussianity) and in cross-moments of two-dimensional probabil-
ity densities, represented by mutual information. This framework was successfully used in [3] for a triangular
T21 spherical truncation of barotropic flow with realistic Earth-like topography. The same relative entropy
framework was employed in [14] for rigorous estimates of the credibility of small-sampled statistical ensem-
bles. Key results of the aforementioned work on predictability of forecast ensembles through information
theory are also summarized in Chapter 1 of [18].

As follows from the context of applications in weather and climate prediction [2,3], the capability of com-
puting the maximum entropy problem in a two- and higher-dimensional domain is highly desirable. On the
other hand, computationally costly geophysical simulations with realistic models often do not yield enough
statistical information to reliably compute higher order moments for an operational forecast. With that in
mind, here we develop an improved maximum entropy algorithm, capable of computing the problem in a mul-
tidimensional domain with moment constraints of low and moderate order, which is a vast improvement over
the simple two-dimensional four-moment algorithm, developed previously in [1]. We have to mention, how-
ever, that, although conditions for determinacy of a moment sequence in a multidimensional setting were
established (see, for example [9] and references therein), there is no way to tell a priori, unlike in the one-
dimensional Hamburger moment problem with Hankel conditions [8], whether or not the variety of probabil-
ity measures corresponding to a given set of moment constraints is nonempty and includes its upper entropy
bound. Yet, in numerous geophysical applications with no observable probability density state (when, for
instance, the state is represented by a forecast ensemble), it is crucial to have a smooth representation of
the density of a state with maximum uncertainty under given constraints, which suggests the maximum
entropy problem as a natural approach for such an approximation.

The manuscript is organized as follows. In Section 2.1 an optimization problem for the Shannon entropy is
formulated for a set of moment constraints in a domain of arbitrary dimension. In Section 2.2 we introduce a
suitable orthogonal polynomial basis which helps to avoid numerical instabilities in the Newton iterations for
higher-order constraints due to different sensitivity of the Lagrangian function to changes in low- and high-
order Lagrange multipliers. Section 2.3 details the modified Gram–Schmidt algorithm, capable of maintaining
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orthogonality of the polynomial basis subject to changing iterates of the target probability density function
(PDF). Section 2.4 outlines the step-by-step schematics of the new algorithm for easy practical implementa-
tion. Section 3.1 displays the results of systematic numerical testing of the new algorithm for the most basic
one-dimensional 4-moment maximum entropy test problem with a broad range of moment constraints and
different resolutions of the Gauss–Hermite quadrature, used to calculate entries of the gradient and Hessian
matrix of the Lagrangian function. In Section 3.2 we show how the algorithm approximates two test PDFs
with qualitatively different shape features in the one-dimensional setting with successive order of the finite
moment sequence of power up to 2, 4, 8 and 16. Section 3.3 contains the results of tests for the two-, three-
and four-dimensional setting with moments of order up to 8, 6 and 4, respectively, where the test maximum
entropy problems are based on the long-term statistics of the 1.5-layer quasigeostrophic double gyre model,
which describes the motion of large scale oceanic currents under wind stress, such as the Gulf Stream and
the Kuroshio. Section 4 summarizes the results of this work.

2. The algorithm

In this section we formulate the multidimensional maximum entropy problem and detail various technical
aspects of novel numerical algorithm capable of computing the maximum entropy problem in the two- and
higher-dimensional domain with moment constraints of low and moderate order.

2.1. The multidimensional maximum entropy problem

We here start with formulation of the moment-constrained maximum entropy principle in a multidimen-
sional domain. Here we follow notations introduced earlier in [1], where for~x 2 RN , with N being the dimen-
sion of the domain, an arbitrary moment of~x (the product of arbitrary powers of components of~x) is concisely
written as
~x~i ¼
YN
k¼1

xik
k ; ~i 2 IN ð1Þ
such that the moment order j~ij is the total power of all vector components, i.e.
j~ij ¼
XN

k¼1

ik: ð2Þ
Using the above notation, for a probability density q we write the set of moment constraints of the total power
up to M as
l0 ¼
Z

RN
qð~xÞd~x ¼ 1; ð3aÞ

l~i ¼ �xi ¼
Z

RN
~x~iqð~xÞd~x; j~ij ¼ 1; ð3bÞ

l~i ¼
Z

RN
ð~x� �~xÞ~iqð~xÞd~x; j~ij ¼ 2 . . . M ; ð3cÞ
where �xi denotes the ith component of the mean state vector �~x for q, while moments of second and higher
orders are centered at the mean state. According to the maximum entropy principle, we are looking for the
probability density q* which maximizes the Shannon entropy
SðqÞ ¼ �
Z

RN
qð~xÞ ln qð~xÞd~x ð4Þ
(i.e. such that S(q*) = maxqS(q)) over all probability densities q which satisfy the moment constraints in (3). In
the case of (3) with N = 1, the problem of finding a probability density function supported on the real line and
satisfying the constraints is called the Hamburger moment problem [8,30], where the maximum entropy
solution apparently belongs to the set of Hamburger solutions. The existence of solutions to the Hamburger
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moment problem is well studied, and depends on positive-definiteness of the corresponding set of Hankel
determinants [8].

It is illustrated in [1], that the formulated above constrained maximum entropy problem is further reduced
to the following unconstrained optimization problem of minimizing the Lagrangian function
Lð~kÞ ¼ ln

Z
RN

exp
XM

j~ij¼1

k~i~x
~i

0
@

1
Ad~x

2
4

3
5�XM

j~ij¼2

k~il~i ð5Þ
over the set of the Lagrange multipliers k~i, with corresponding optimal probability density
qð~xÞ ¼
exp

PM
j~ij¼1k~ið~x� �~xÞ~i

� �
R

RN exp
PM
j~ij¼1k~ið~x� �~xÞ~i

� �
d~x
: ð6Þ
Due to the normalization requirement of the optimal probability density q in (6), the order of constraints M is
restricted to even values, but is otherwise arbitrary. It is shown in [1] that the problem of unconstrained min-
imization of (5) over the set of Lagrange multipliers k~i is concave, and thus if its minimum exists, then it is
unique.

2.2. Improved polynomial basis for optimization

Although the minimization problem in (5) is concave, the straightforward optimization of (5) via an iter-

ative technique like the Newton method [7], or the BFGS algorithm [5], directly over its Lagrange multipliers

encounters numerical difficulty due to different sensitivity of the value of the Lagrangian function Lð~kÞ to
changes in different Lagrange multipliers k~i. Indeed, it is easy to see that the value of the Lagrangian function
is not likely to respond as much to a change in a first-level Lagrange multiplier k~i with jij = 1, as it is likely to
respond to a change in, say, a fifth-level Lagrange multiplier with jij = 5, due to the fact that the exponential
function in the integrand of the phase-space integral in (5) is more sensitive to changes in higher powers of~x.
As a result, optimizing over the Lagrange multipliers directly often fails when the maximum moment order M

exceeds the value of 6 or even 4.
Thus, in order to successfully iterate the optimization problem in (5), one has to replace the set of mono-

mials~x~i with a different basis, in which the Lagrangian function in (5) has roughly same sensitivity to changes
in any of the coordinates of such a basis. A simple solution is to replace basis monomials~x~i with a set of Mth
order polynomials pkð~xÞ,
f~x~i; k~ig; ~i 2 IN ; 0 6 jij 6 M ! fpkð~xÞ; ckg; 1 6 k 6 K;

K ¼ ðM þ NÞ!
M !N !

� 1;
ð7Þ
where ck are the Lagrange multipliers of the new basis. Since each basis polynomial pkð~xÞ is of Mth order, the
Lagrangian function should have comparable sensitivity to changes in different ck. Note that the constant
(zero-power) term of each pk in (7) is zero, since no constant terms enter the argument of the exponential func-
tion in (5). The Lagrangian function (5) is written in the new polynomial coordinates as
Lð~kÞ ¼ ln

Z
RN

exp
XK

k¼1

ckpkð~xÞ
 !

d~x

" #
�
XK

k¼1

ckpkð~lÞ; ð8Þ
where pkð~lÞ above in (8) denotes the polynomial pkð~xÞ where all the powers~x~i are replaced with corresponding
constraints l~i from (3), except for first-order constraints, which are set to zero to comply with the sum in (5)
starting at j~ij ¼ 2. The corresponding optimal probability density function is now written as
qð~xÞ ¼
exp

PK
k¼1ckpkð~x� �~xÞ

� �
R

RN exp
PK

k¼1ckpkð~x� �~xÞ
� �

d~x
: ð9Þ
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For the one-dimensional setup (i.e. when~x is a scalar), it is common to use the shifted Chebyshev polynomials
[4] or the Lagrange interpolation polynomials with suitably spaced roots [31], so that comparable sensitivity of
the Lagrangian function to changes in new coordinates is ensured. Although it might be possible to generalize
the Chebyshev polynomials or the Lagrange interpolants to the multidimensional setup, here we instead use an
adaptive system of K general orthogonal polynomials, tailored for the optimization problem.

In order to determine key properties of a suitable polynomial system, we write the formula of the Newton
iterations for (8):
~cnþ1 ¼~cn � H�1rLj~cn ; ð10Þ
where~cn denotes the vector of Lagrange multipliers in the new basis at nth Newton iteration. Here the entries
of the gradient rL and Hessian H are given by
ðrLÞk ¼
oL

ock
¼ Q½pk�

Q½1� � pkð~lÞ; ð11aÞ

ðHÞkl ¼
o

2L

ockocl
¼ Q½pkpl�

Q½1� �
Q½pk�Q½pl�
ðQ½1�Þ2

; ð11bÞ
where the building block Q[g] for an arbitrary function gð~xÞ is computed as
Q½g� ¼
Z

RN
gð~xÞ exp

XK

k¼1

ckpk

 !
d~x: ð12Þ
The integral in (12) is computed through the Gauss–Hermite quadrature, as suggested in [1]. It is easy to
see that the optimization problem in new coordinates remains concave: one writes the Hessian in (11b) in
the form
H ¼ 1

Q½1�Q pk �
Q½pk�
Q½1�

� �
� pl �

Q½pl�
Q½1�

� �� 	
;

and thus the inner product~vT H~v for an arbitrary vector~v is
~vT H~v ¼ 1

Q½1�Q
X

k

vk pk �
Q½pk�
Q½1�

� � !2
2
4

3
5P 0:
In order to improve numerical stability of the Newton iterations in (10), we require the following orthogon-
ality condition for the polynomials pk at each step of the Newton iterations:
Q½pkpl� ¼ Q½1�dpl; ð13Þ

where dpl is the usual Kronecker delta-symbol. The orthogonality requirement in (13) also provides roughly
same sensitivity of the Lagrangian function in (8) to changes in different ck due to comparable curvatures
of the second-order surface approximation to L in all directions at the current iteration point, and turns
the formula in (11b) for the Hessian matrix into
ðHÞkl ¼
o2L

ockocl
¼ dkl �

Q½pk�Q½pl�
Q½1�2

: ð14Þ
With (14), the inverse Hessian matrix H�1 is computed explicitly via the Sherman–Morrison formula
ðH�1Þkl ¼ dkl þ
Q½pk�Q½pl�

ðQ½1�Þ2 �
PK

m¼1ðQ½pm�Þ
2

ð15Þ
such that the next iterate in (10) is readily available. For details on the Sherman–Morrison formula see, for
example, [13].
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2.3. Orthogonalization of the polynomial basis

In the previous section we have formulated the orthogonality condition in (13) for the basis polynomials in (7)
in order to improve numerical stability of the Newton iterations in (10) for the minimization of the Lagrangian
function in (8). However, the quadratures Q in (12) are weighted by the probability density function of the form
(9) which changes between Newton iterations, and thus the orthogonal relation in (13) computed at nth iteration
is not necessarily preserved at (n + 1)th iteration. Therefore, a Gram–Schmidt [26] type of polynomial reorthog-
onalization of pk is required at each step of Newton iteration. Poor numerical stability of the classical Gram–
Schmidt reorthogonalization is widely known, and common numerically stable tools to reorthogonalize a set
of Euclidean vectors usually involve the Householder reflections or Givens rotations [13]. However, it is not
clear whether an analog of Householder or Givens decomposition exists for polynomials of an arbitrary dimen-
sion and order, and a suitable stabilized modification of the Gram–Schmidt algorithm will be used instead.

Recent works [6,10–12] demonstrate that the modified Gram–Schmidt algorithm yields a good precision for
vectors which are not ‘‘too ill-conditioned’’. In particular, it is demonstrated in [11] that the modified Gram–
Schmidt algorithm with reorthogonalization yields errors which are small multiples of the machine round-off
error. Here, since the reorthogonalization of pk has to be carried out at each Newton iteration to preserve
orthogonality of polynomials, it is reasonable to assume that the metric defined by (12) does not change
between iterations as much so that an orthogonal system of polynomials at the current step of the Newton
iterations becomes too ill-conditioned at the next step.

According to the classical Gram–Schmidt method, given K arbitrary linearly independent polynomials ak,
their orthogonal in the sense of (13) counterparts pk are computed as
pk ¼ ðQ½1�Þ
1=2

ak �
Pk�1

l¼1
Q½akpl�

Q½1� pl

Q ak �
Pk�1

l¼1
Q½akpl�

Q½1� pl

� �2
� 	1=2

; 1 6 k 6 K: ð16Þ
As mentioned before, the classical Gram–Schmidt method is numerically unstable, and here we use a suitably
modified version of the Gram–Schmidt method with reorthogonalization from [12], tailored for a polynomial
basis. It is not convenient to illustrate the modified Gram–Schmidt method as a formula in (16) due to recur-
sive nature of its computational implementation, and instead we give a step-by-step program of the algorithm
as in [12] in a fashion which resembles some modern computer languages:

Modified Gram–Schmidt algorithm with reorthogonalization

for k = 1, . . . ,K {

for l = 1,2 {
al

k ¼ al�1
k

for m = 1, . . . ,k � 1
al

k ¼ al
k � Q½al

kpm�pm

}
pk = (Q[(pm)2])�1/2ak

}
for k = 1, . . . ,K

pk = (Q[1])1/2pk

Although the classical Gram–Schmidt algorithm in (16) is twice as fast as the modified Gram–Schmidt
algorithm with reorthogonalization described above, the latter has much better numerical stability, which
makes it more suitable for our purposes.
2.4. Schematic outline of the algorithm

This section illustrates a schematic step-by-step outline of the algorithm, suitable as a set of general guide-
lines for its practical numerical implementation. The preconditioning of input constraints, choice of starting
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point for Newton iterations and numerical algorithm for computing Gauss–Hermite quadratures in (12) are
the same as in [1].

(1) Precondition input constraints by setting zero mean and identity covariance as in [1].
(2) Generate a set of K random linearly independent polynomials pk of Mth order with all their zero-power

terms set to zero.
(3) Choose the set of Lagrange multipliers ck corresponding to the Gaussian distribution with zero mean

and identity covariance for the starting point q0 of Newton iterations as in [1] in the new polynomial
basis pk.

(4) Reorthogonalize the set of polynomials pk according to (13) with respect to the current iterate of q, using
the Gauss–Hermite quadratures to compute integrals Q in (12) as in [1], and recompute the set of
Lagrange multipliers ck with respect to the reorthogonalized basis.

(5) Compute the gradient and inverse Hessian of the new iterate of the Lagrangian function L via the Sher-
man–Morrison formula in (15).

(6) Perform one step of the modified (guarded) Newton iteration according to (10) with inexact line search
as in [1], using the new gradient and inverse Hessian matrix.

(7) If the minimum of the Lagrangian function is not reached, return to step 4; otherwise, recompute the
optimal ck into the set of standard Lagrange multipliers k~i for the monomial basis~x~i, to match the format
of the input constraints.

The algorithm is implemented for an arbitrary phase space dimension N and an arbitrary order of input
constraints M, using the object-oriented style of the C++ programming language. However, practical limita-
tions on N and M are imposed by computational speed of machine-specific hardware.
3. Numerical experiments

Here we show the results of the systematic testing of the new algorithm in several practical situations. In
particular, first we present an extensive study of convergence properties of the algorithm in a simplest
4-moment one-dimensional set-up for different resolutions of the Gauss–Hermite quadrature, followed by a
number of higher-order multidimensional tests, based on a real-world geophysical model for wind stress
driven oceanic currents, to demonstrate practical computational ability of the new algorithm.

3.1. Basic test for maximum entropy: the one-dimensional 4-moment problem

The 4-moment, one-dimensional maximum entropy problem is a simplest set-up which requires numerical
simulation to compute the optimal set of Lagrange multipliers; an optimal solution to the 2-moment problem
is automatically the Gaussian distribution with prescribed mean state and variance. Hence, the 4-moment
problem is chosen as a basic maximum entropy test due to its computational simplicity and the fact that
for a fixed mean state and variance it has only two degrees of freedom, the third and fourth moments, also
called skewness and flatness, respectively:
Skewness ¼ l3 ¼
Z

R

ðx� �xÞ3qðxÞdx;

Flatness ¼ l4 ¼
Z

R

ðx� �xÞ4qðxÞdx:

ð17Þ
Without loss of generality we set the mean state, �x, to zero, and variance, l2, to 1, because it is demonstrated in
[1] that the multidimensional maximum entropy problem of an arbitrarily high order can be explicitly rescaled
to an equivalent problem with zero mean state and identity covariance matrix. The fact that we have only two
variable parameters, skewness and flatness, allows us to study basic convergence properties of the algorithm
for a broad range of these parameters.
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3.1.1. Area of convergence for the 4-moment one-dimensional problem

It has been shown in Section 2.2 that the Lagrangian minimization problem in polynomial coordinates (8) is
concave, which means that it has at most one optimal solution. However, an optimal solution does not nec-
essarily exist for a set of arbitrarily specified moment constraints. The existence of solutions to the M-moment
(for even M) Hamburger moment problem is specified by a set of Hankel conditions
Dk ¼ det

l0 l1 � � � lk=2

l1 l2 � � � lk=2þ1

..

. ..
. ..

.

lk=2 lk=2þ1 � � � lk

0
BBBBB@

1
CCCCCA > 0; k ¼ 0; 2; 4; . . . ;M : ð18Þ
For the 4-moment Hamburger problem with zero mean state and unit variance D0 and D2 are automatically
positive, and thus the existence condition is given by a single Hankel determinant
D4 ¼ det

1 0 1

0 1 l3

1 l3 l4

0
B@

1
CA > 0; ð19Þ
which imposes the following relation between the skewness l3 and flatness l4:
4-moment maximum entropy solution exists if l4 > l2
3 þ 1: ð20Þ
Therefore, here we study convergence of the new algorithm over the two-dimensional area inside the parabolic
test curve defined by
l4 ¼ l2
3 þ 1: ð21Þ
In Figs. 1 and 2, we show the results of the 4-moment one-dimensional convergence test for the new maximum
entropy algorithm on the l3 · l4 domain with fixed l1 = 0 and l2 = 1. The test is performed for the Gauss–
Hermite quadratures of (12) with four different resolutions: 20, 30, 40 and 50 discretization points. All
convergence tests are performed within the area of existing solutions given by (20), and designated by an
appropriate curve in Figs. 1 and 2. One can observe that the algorithm fails to converge at a few points in
close proximity to the convergence area boundary limited by (21), and the number of failures is between
4.7% and 5.9% of the total number of simulations (systematically decreasing as resolution of the Gauss–Her-
mite quadrature increases). Overall, the results show a reasonably good practical range of convergence of the
new algorithm, with failures only at ‘‘pathological’’ points near the boundary (21) defined by the existence
condition in (20). The Gauss–Hermite quadrature with 50 discretization points in each dimension is used
for further numerical experiments in the current work.

3.1.2. Integrability of optimal 4-moment PDFs

An optimal one-dimensional 4-moment probability density function (PDF) with zero mean state is defined
by a set of four Lagrange multipliers k1,k2,k3,k4 as
q4ðxÞ ¼ expðk0 þ k1xþ k2x2 þ k3x3 þ k4x4Þ
with

k0 ¼ � ln

Z
R

exp k1xþ k2x2 þ k3x3 þ k4x4
� �

dx:

ð22Þ
It is clear that for k4 > 0 the probability density q4(x), given by (22), is not integrable on R due to its expo-
nential growth as x! +1 or x!�1. On the other hand, the Gauss–Hermite quadratures in (12) are com-
puted over a finite set of discretization points (roots of an appropriate Gauss–Hermite polynomial) for which
q4(x) even with k4 > 0 does not achieve infinite values. Therefore, it is quite possible for the new algorithm to
converge at an ‘‘optimal’’ set of Lagrange multipliers with k4 > 0 which indeed maximizes entropy within the
context of finite Gauss–Hermite quadratures in (12), but is not valid for the 4-moment Hamburger problem on
R. Thus, we need to find the subset of the set of existing solutions given by (20) which corresponds to optimal
q4(x) with k4 < 0, and check whether the new algorithm provides valid solutions within this domain.
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In order to distinguish between the sets of optimal solutions q4(x) with positive and negative k4 in the
l3 · l4 plane (with l1 and l2 fixed at 0 and 1, respectively), one has to determine a level curve in this domain
which corresponds to k4 = 0 and separates the regions of positive and negative k4 from each other. Taking into
account the form of the optimal probability density in (6), or, equivalently, in (22), the following relation holds
between the moment li and the Lagrange multiplier kj:
oli

okj
¼ liþj; ð23Þ
and, therefore, for the 4-moment one-dimensional problem one can write
dl1

dl2

dl3

dl4

0
BBB@

1
CCCA ¼

l2 l3 l4 l5

l3 l4 l5 l6

l4 l5 l6 l7

l5 l6 l7 l8

0
BBB@

1
CCCA

dk1

dk2

dk3

dk4

0
BBB@

1
CCCA: ð24Þ



 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8 9 10

S
ke

w
ne

ss

Flatness

Basic maximum entropy test, four moments, zero mean, unit variance
Quadrature resolution 40 points, 425 trials, 5.4% errors

Test curve
Converged

Error
L4>0

Level curve L4=0

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8 9 10

S
ke

w
ne

ss

Flatness

Basic maximum entropy test, four moments, zero mean, unit variance
Quadrature resolution 50 points, 425 trials, 4.7% errors

Test curve
Converged

Error
L4>0

Level curve L4=0

Fig. 2. The domain of convergence of the maximum entropy algorithm for the 4-moment one-dimensional maximum-entropy problem
with zero mean and unit variance. The amplitudes of skewness and flatness are limited at 3 and 10, respectively. The resolution of Gauss–
Hermite quadratures is 40 and 50 points. The dashed test curve designates the area of existence for optimal solutions. Non-normalizable
on R optimal solutions (k4 > 0) are denoted as ‘‘+’’. Level curve k4 = 0 is drawn in a dot-dashed style.

630 R.V. Abramov / Journal of Computational Physics 226 (2007) 621–644
By setting dk4 = 0 (since we are looking for its level curve) and dl1 = 0, dl2 = 0 (since l1 and l2 are fixed at 0
and 1, respectively), from (24) we obtain
l2dk1 þ l3dk2 þ l4dk3 ¼ 0;

l3dk1 þ l4dk2 þ l5dk3 ¼ 0;
ð25Þ
which yields the following set of ordinary differential equations
dk2

dk1

¼ l3l4 � l2l5

l3l5 � l2
4

;

dk3

dk1

¼ l2l4 � l2
3

l3l5 � l2
4

;

ð26Þ
where k1 plays the role of the independent variable. At this point, taking into account (24) and (26), one writes
the equation for the level curve of k4 in the l3 · l4 domain as
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dl4

dl3

¼ l3l
2
5 � l2

4l5 þ l3l4l6 � l2l5l6 þ l2l4l7 � l2
3l7

2l3l4l5 � l3
4 � l2l

2
5 þ l2l4l6 � l2

3l6

: ð27Þ
In practice, of course, we do not solve (27) directly: instead, the system in (26) is numerically solved with the
initial condition k1 = k3 = k4 = 0, k2 = �0.5, which corresponds to the Gaussian distribution with zero mean
state and unit variance. Then, the solution of (26) is mapped onto the l3 · l4 domain via (17).

In Figs. 1 and 2 we show the solution curve of (26) which corresponds to the fixed fourth Lagrange
multiplier k4 = 0, and also record the points were the new algorithm has converged, but the obtained optimal
4-moment probability density is not integrable on R due to positive k4. As one can observe, for relatively low
resolution 20 and 30 point Gauss–Hermite quadratures there are a few optimal points outside the domain
bounded by (26) which yield positive k4, however, as resolution increases to 40 and 50 points, the number
of registered outcomes with positive k4 decreases rapidly to zero.

3.1.3. Errors in PDFs for different Gauss–Hermite quadrature resolutions

Even if the new algorithm converges for a given set of constraints (i.e. the stopping criterion for the Newton
iterations is satisfied within the machine-precision tolerance), the computed optimal Lagrange multipliers are
not necessarily precise due to errors in finite quadrature. While it is true that for a Gaussian probability den-
sity the Gauss–Hermite quadrature yields exact values of moments of up to the order of the quadrature itself,
the quadrature errors must develop when the optimal probability density departs from Gaussian. Thus, the
optimal Lagrange multipliers might not be computed precisely, and, therefore, the shape of thus computed
optimal probability density function should differ from the ‘‘true’’ optimal PDF. One, of course, cannot com-
pute the optimal PDFs precisely due to finite resolution of the Gauss–Hermite quadrature. However, we solve
the maximum entropy problem for identical sets of constraints with successively increasing quadrature reso-
lutions, and observe how the shape of the optimal PDF changes with better quadrature precision. Here we
pick four sets of constraints for the test problem with zero mean state l1 = 0 and unit variance l2 = 1:

(A) Skewness l3 = 0.15 and flatness l4 = 1.4 – this set corresponds to a slightly skewed and strongly bimodal
sub-Gaussian distribution with two relatively high and narrow peaks;

(B) Skewness l3 = 0.6 and flatness l4 = 2 – this is a skewed and bimodal distribution, although not as bimo-
dal as a strongly bimodal example above;

(C) Skewness l3 = 1.4 and flatness l4 = 5 – this is a strongly skewed but unimodal distribution with a long
and weighty ‘‘tail’’ on the right-hand side of the origin;

(D) Skewness l3 = 0 and flatness l4 = 3 – this is a Gaussian distribution, for which the Gauss–Hermite
quadrature happens to be exact. It is shown as a control test to demonstrate the machine precision of
the Gauss–Hermite quadrature for the Gaussian distribution regardless of order.

We show the results of the Gauss–Hermite quadrature precision test in Figs. 3 and 4, and also summarize
the L2-errors for computed PDFs in Table 1. The L2-errors between two PDFs q1 and q2 are computed as
follows:
kq2 � q1k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ

R

ðq2 � q1Þ
2 dx

s
: ð28Þ
One can observe in Figs. 3 and 4 that, from visual perspective, the largest errors due to different Gauss–
Hermite quadrature resolutions develop for the two bimodal examples (A) and (B), defined above. Apparently,
this happens due to the fact that high and narrow peaks of the displayed PDFs are hard to capture with a low-
resolution quadrature, because the discretization points of the quadrature might not fall directly onto a peak.
Thus, an increase in Gauss–Hermite quadrature resolution leads to a substantial improvement in the shape of
PDFs. On the contrary, there are no visible discrepancies between different Gauss–Hermite quadrature reso-
lutions for the test case (C), which refers to a strongly skewed but unimodal distribution. Apparently, even
low-resolution quadratures are able to capture the shape of the distribution in (C) quite precisely due to its
smoothness and despite the fact that it is strongly non-Gaussian. For the test case (D), which is a Gaussian
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distribution, no visible differences between PDFs are observed, as expected. The summary in Table 1 essen-
tially confirms the results in Figs. 3 and 4: namely, the largest L2-errors for computed PDFs can be observed
for strongly bimodal distributions, while a strongly skewed but unimodal distribution can be computed rela-
tively precisely even by low-resolution quadratures. The errors for a Gaussian distribution are on the level of
machine-precision error, as expected.

3.2. Higher-moment one-dimensional problems

Naturally, moments of high order are not the best set of constraints to detail an approximation of a prob-
ability density function via maximum entropy principle, and there are better ways to increase resolution of
probability density approximation in the one-dimensional setting like recursion coefficients (see, for example
[15,16,31] and references therein). Although the new algorithm is designed to operate mainly in the generalized
setting of two- and higher-dimensional phase space with low to moderate order of constraints, in this section
we intend to demonstrate that the algorithm is numerically robust in the one-dimensional setting with rela-
tively high order of moment constraints.
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Table 1
The L2-errors between 4-moment one-dimensional optimal PDFs computed at different quadrature resolution, for different values of
skewness and flatness

Quad. res., pts. 20 vs 50 30 vs 50 40 vs 50

Skew = 0.15, flat = 1.4 0.09709 0.1922 0.0452
Skew = 0.65, flat = 2 0.2246 0.03372 0.7318 · 10�2

Skew = 0, flat = 3 0.9105 · 10�15 1.459 · 10�16 0.69 · 10�15

Skew = 1.4, flat = 5 2.804 · 10�3 3.113 · 10�4 0.541 · 10�4
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For the testing of the new algorithm we pick two probability density functions with moderately complex
shapes. The first test probability density, displayed in Fig. 5, is a superposition of six Gaussian curves with
various positions, widths and heights, and is a largely unimodal and positively skewed with a small bump
on the left-hand slope. The second test probability density, shown in Fig. 6 is qualitatively different: it is a
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superposition of only two Gaussian curves, however those curves are sufficiently distant from each other to
give a distinctively bimodal shape to the second test probability density. We then construct the 2-, 4-, 8-
and 16-moment maximum entropy approximations to each of these probability density functions and measure
the L2-errors between the test probability density functions and their approximations in the same manner as in
(28).

The maximum entropy approximations and their L2-errors for the first test PDF are shown in Fig. 5. One
can see that the increase in the order of moment constraints visually improves the similarity between the test
PDF and the corresponding approximation. This trend is also confirmed in the table of L2-errors in the same
figure. For the second test PDF in Fig. 6 the situation is similar, namely, an improvement in maximum
entropy approximation is observed for increased order of moment constraints both in visual shape and
L2-error. However, one can see that the improvement from eighth order to 16th order (which means having
twice as many constraints) yields merely a moderate improvement in the approximation despite supplying a lot
more information in the latter case and vastly increasing numerical complexity thereof. This observation is an
indirect confirmation of the fact that moment constraints naturally do not supply detailed information about
finer details of the shape of a PDF.

3.3. Two- and higher-dimensional problems

In this section we demonstrate the ability of the algorithm to compute optimal maximum entropy proba-
bility density functions for two- and higher-dimensional problems. Here, rather than generating synthetic tests
PDFs like those in the previous section for the one-dimensional problems, we show a few illustrative examples
from a real-world geophysical model. The model we consider simulates large scale oceanic currents which are
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formed by the boundary layer separation at eastern boundaries of continents in the Northern hemisphere due
to wind stress-driven ocean circulation, namely the Gulf Stream, which separates from the eastern boundary
of Northern America, and the Kuroshio, originating at the eastern boundary of the Asian continent. The
model consists of the 1.5-layer quasigeostrophic double gyre equation, suggested by McCalpin and Haidvogel
[20,21] for studies of the wind-driven ocean circulation. The simulation is performed for the reference set of
physical parameters set forth by McCalpin and Haidvogel [20,21] and corresponds to the wind-driven flow in a
3600 · 2800-km rectangular basin at 30� Northern latitude, which is, of course, an idealized setting for com-
plex flows such as the Gulf Stream, which are also governed by large scale features of the nearby coastline. The
statistical quantities observed are so-called empirical orthogonal functions (EOFs) and their principal compo-
nents (PCs), whose physical meaning is explained below.

Operational high-resolution models, designed to simulate real-world geophysical phenomena, may have
tens and hundreds of thousands spatial discretization points in order to capture essential features of the phe-
nomenon which is being simulated. In particular, in the 1.5-layer quasigeostrophic double gyre model used in
the current paper as an example, the numerical solution is computed at 25,200 discretization points for each
time step. As a result, for such a sophisticated model it is highly desirable to have a suitable coordinate system
which captures essential features of large-scale behavior along just a few carefully chosen directions. In the
atmosphere/ocean science community, these directions are called the empirical orthogonal functions (EOFs)
and are computed as appropriately normalized eigenvectors of the long-term covariance matrix of the model.
EOFs are sorted in descending order of magnitude of their corresponding eigenvalues, such that the first EOF
is aligned with the direction of largest variability in the system, the second EOF is aligned with the direction of
next largest variability which is orthogonal to the first, and so forth. As a result, EOFs are highly efficient in
capturing large scale features of the model, and usually first five or six EOFs explain more the 99% of vari-
ability in the model. Note that EOFs are useful mainly from diagnostic standpoint; truncating the model itself
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to the first few EOFs to simplify computations normally does not yield consistent behavior except, perhaps,
for very few special cases. Coordinates of a solution in the EOF basis are called principal components (PCs).
Conventionally, EOFs are normalized in such a way that the long-term covariance matrix of their principal
components is the identity matrix.
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lower-left – 6-moment optimal PDF (27 constraints), lower-right – 8-moment optimal PDF (44 constraints).
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Fig. 8. The two-dimensional probability density functions of principal components 1 and 2 for the 1.5-layer quasigeostrophic double gyre
model. Upper-left – actual PDF recorded from model simulation by bin-counting, upper-right – 4-moment optimal PDF (14 constraints),
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3.3.1. Two-dimensional problems

In Figs. 7 and 8 we show the recorded, via a standard bin-counting algorithm, long-term two-dimensional
joint probability density functions for principal components PC1 and PC2 of the EOF basis for the 1.5-layer
quasigeostrophic double gyre model, together with optimal maximum entropy PDFs obtained for the sets of
moments of order up to 4, 6 and 8. Due to the fact that the maximum entropy problems here are two-dimen-
sional, the corresponding number of constraints for these problems, according to the formula in (7), is 14, 27
and 44, respectively. Observe that while neither of the optimal PDFs approximates small scale spikes of the
Table 2
L2-errors between optimal and actual PDFs, and values of entropy of optimal PDFs for different sets of moments

Order Error Entropy

PDF errors and entropy, PC1 and 2

4 0.0544 2.646
6 0.04639 2.629
8 0.03449 2.62

PDF errors and entropy, PC3 and 4

4 0.03445 2.801
6 2.858 · 10�2 2.785
8 2.45 · 10�2 2.783
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actual recorded histogram, the amount and quality of reproduced large and moderate scale features system-
atically increases with increasing order of constraints. Same types of PDFs, but for different joint distribution
of principal components PC3 and PC4, are shown in Figs. 9 and 10, where one can observe the same trends in
approximation and detailing of optimal maximum entropy PDFs as in Figs. 7 and 8. For systematic compar-
ison of optimal PDFs of different order, in Table 2 we display L2-errors between optimal maximum entropy
PDFs and the actual recorded PDFs, as well as values of the Shannon entropy for optimal PDFs. Observe that
while errors between actual and optimal PDFs systematically decrease as more constraints are used in corre-
sponding maximum entropy problems, the values of entropy also decrease with increasing order of con-
straints. The latter occurs due to the fact that introducing more constraints can only decrease entropy by
capturing more information about the same PDF [2,3,19]. Also note that the errors do not decrease signifi-
cantly with increasing order of constraints. Doubling the order (4–8), which results in tripling the number
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Fig. 12. Comparison of three-dimensional 6-order (83 constraints) optimal PDF with actual histograms recorded from the model via bin-
counting. Left column – the recorded joint distributions of PC1 and PC2, PC1 and PC3, PC2 and PC3. Right column – the corresponding
two-dimensional marginal distributions of the single three-dimensional optimal PDF, spanning PC1, PC2 and PC3. Height difference
between successive contours is 0.01.
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of constraints (14–44), typically yields error decrease by only 30–40%. This is an evidence of slow convergence
of the moment sequence in the multidimensional Hamburger moment problem. For more details, see [9].

3.3.2. Three- and four-dimensional problems

In addition to the tests of the new algorithm in the two-dimensional domain, we compute maximum
entropy problem for the same set-up in three- and four-dimensional domains. For the three-dimensional
moment problem we choose the moment constraints of the principal components PC1, PC2 and PC3. The
optimal three-dimensional probability density function is computed for the moment constraints of up to order
6, totaling 83 constraints. Since it is hard to visualize a three-dimensional probability density function, instead
we show its two-dimensional marginal distributions (obtained via averaging over the third coordinate) for
each pair of the three principal components, PC1–PC2, PC1–PC3 and PC2–PC3. These three marginal distri-
butions are displayed in Figs. 11 and 12, together with the joint probability density functions recorded directly
from the model simulation via bin-counting. Observe that the marginals of the optimal three-dimensional
maximum entropy PDF reproduce large and moderate scale features of the actual recorded PDFs remarkably
well, which can be seen on both mesh and contour plots, although fail to notice small scale spikes (see, for
example, marginal PDF of principal components PC1–PC2). For the four-dimensional moment problem
we choose the moment constraints of the principal components PC1, PC2, PC3 and PC4. The optimal
four-dimensional probability density function is computed for the moment constraints of up to order 4, total-
ing 69 constraints. Like before, we show the two-dimensional marginal distributions (obtained via averaging
over the third and fourth coordinates) for each pair of the four principal components, PC1–PC2, PC1–PC3,
PC2–PC3, PC1–PC4, PC2–PC4 and PC3–PC4. These six marginal distributions are displayed in Figs. 13–16,
together with the joint probability density functions recorded directly from the model simulation via
-4 -3 -2-1  0  2PC1 -4 -2  0 1  2 3  4PC3 0 0.05 0.1 0.15 0.2 0.25
4-order PDF, marginal PC 2 and 3mparison of four-dimensional 4-order (69 constraints) optimal PDF with actual histograms recorded from the model via bin-eft column – the recorded joint distributions of PC1 and PC2, PC1 and PC3, PC2 and PC3. Right column – the correspondingsional marginal distributions of the single four-dimensional optimal PDF, spanning PC1, PC2, PC3 and PC4.R.V. Abramov / Journal of Computational Physics 226 (2007) 621–644
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Fig. 14. Comparison of four-dimensional 4-order (69 constraints) optimal PDF with actual histograms recorded from the model via bin-
counting. Left column – the recorded joint distributions of PC1 and PC2, PC1 and PC3, PC2 and PC3. Right column – the corresponding
two-dimensional marginal distributions of the single four-dimensional optimal PDF, spanning PC1, PC2, PC3 and PC4. Height difference
between successive contours is 0.01.
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bin-counting. Again, observe that the marginals of the optimal three-dimensional maximum entropy PDF
reproduce large and moderate scale features of the actual recorded PDFs rather well, although fail to notice
small scale spikes (see, for example, marginal PDFs of principal components PC1–PC2 or PC1–PC4).

4. Summary

The current work further develops the practical computational approach for the moment-constrained
maximum entropy principle in the multidimensional domain, set forth in [1]. Here we suggest the maximum
entropy algorithm which is designed to operate in a domain of arbitrary dimension, limited mainly by
computational speed of modern computer hardware. In order to avoid numerical instabilities in the Newton
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iterations due to different sensitivity of the Lagrangian function to changes in different Lagrange multipliers,
we introduce a suitable orthogonal polynomial basis, which also facilitates computation of the Hessian matrix
for the Newton iterations via the Sherman–Morrison formula. The modified stable Gram–Schmidt algorithm
maintains orthogonality of the polynomial basis with respect to the inner product generated by varying iter-
ates of the target probability density function. The domain integrals are computed via the high-order Gauss–
Hermite quadratures. We systematically test the new algorithm for the most basic one-dimensional 4-moment
maximum entropy test problem with a broad range of moment constraints and different Gauss–Hermite quad-
rature resolutions. It is observed that the impact of Gauss–Hermite quadrature resolution is more profound
for PDFs with tall and narrow spikes, which is expected because spikes are harder to capture with low-order
resolution. It is also demonstrated that the new algorithm fails to converge only for a few test points near the
boundary of the domain of convergence for the 4-order Hamburger moment problem, while converging every-
where else within the domain. For the one-dimensional maximum entropy problem of higher order we dem-
onstrate how the algorithm approximates two test PDFs with qualitatively different shape features with
successive order of finite moment sequence up to 2, 4, 8 and 16. It is found that the errors between the test
PDF and maximum entropy PDFs systematically decrease when the order of moment constraints is increased.
For the maximum entropy tests in two- and higher-dimensional domain, we use the long-term statistics of
principal components of first four empirical orthogonal functions of the 1.5-layer quasigeostrophic double
gyre model, which is used to describe oceanic currents driven by the wind stress with boundary layer separa-
tion, such as the Gulf Stream and the Kuroshio currents. Remarkably, the new algorithm is found to be capa-
ble of computing the maximum entropy problem in a two-dimensional domain with moment constraints of
order up to 8 (44 moment constraints in total), in a three-dimensional domain with moment constraints of
order up to 6 (83 moment constraints in total), and in a four-dimensional domain with moment constraints
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Fig. 16. Comparison of four-dimensional 4-order (69 constraints) optimal PDF with actual histograms recorded from the model via bin-
counting. Left column – the recorded joint distributions of PC1 and PC4, PC2 and PC4, PC3 and PC4. Right column – the corresponding
two-dimensional marginal distributions of the single four-dimensional optimal PDF, spanning PC1, PC2, PC3 and PC4. Height difference
between successive contours is 0.01.
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of order up to 4 (69 moment constraints in total). It is observed that computed maximum entropy approxi-
mations systematically approach the actual test PDF as the order of moment constraints is increased.
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[26] E. Schmidt, Über die Auflösung linearer Gleichungen mit unendlich vielen Unbekannten, Rend. Circ. Mat. Palermo, Ser. I 25 (1908)

53–77.
[27] T. Schneider, S. Griffies, A conceptual framework for predictability studies, J. Clim. 12 (1999) 3133–3155.
[28] D. Scott, Multivariate Density Estimation: Theory, Practice and Visualization, Wiley, New York, 1992.
[29] B. Silverman, Density Estimation for Statistics and Data Analysis, Chapman and Hall, London, 1986.
[30] A. Tagliani, Hausdorff moment problem and maximum entropy: a unified approach, Appl. Math. Comp. 105 (1999) 291–305.
[31] I. Turek, A maximum-entropy approach to the density of states with the recursion method, J. Phys. C 21 (1988) 3251–3260.
[32] X. Wu, Calculation of maximum entropy densities with application to income distribution, J. Econ. 115 (2003) 347–354.
[33] Z. Wu, G. Phillips, R. Tapia, Y. Zhang, A fast Newton algorithm for entropy maximization in phase determination, SIAM Rev. 43

(4) (2001) 623–642.


	An improved algorithm for the multidimensional moment-constrained maximum entropy problem
	Introduction
	The algorithm
	The multidimensional maximum entropy problem
	Improved polynomial basis for optimization
	Orthogonalization of the polynomial basis
	Schematic outline of the algorithm

	Numerical experiments
	Basic test for maximum entropy: the one-dimensional 4-moment problem
	Area of convergence for the 4-moment one-dimensional problem
	Integrability of optimal 4-moment PDFs
	Errors in PDFs for different Gauss-Hermite quadrature resolutions

	Higher-moment one-dimensional problems
	Two- and higher-dimensional problems
	Two-dimensional problems
	Three- and four-dimensional problems


	Summary
	Acknowledgments
	References


